Skip to main content

Best Early Career Researcher in Observational Astrophysics

Dr Jorryt Matthee

ETH Zürich, Switzerland

The 2020 MERAC Prizes for the Best PhD Thesis are awarded in Observational Astrophysics to Dr Jorryt Matthee (ETH Zürich, Switzerland) for spectacular results that have transformed the way we see and understand distant galaxies across time.

Dr Jorryt Matthee obtained his BSc degree from Utrecht on the observability of multiple stellar generations in globular clusters. He continued his studies at Leiden, where he got his MSc Cum Laude in 2012. Jorryt was then awarded a prestigious Huygens PhD fellowship by Leiden University to work on his own research project at Sterrewacht Leiden, combining observational studies of distant galaxies and theoretical analysis. Dr Matthee's thesis in late 2018 received the prize for best PhD thesis in the Leiden Science Faculty, and was distinguished by the 2018 IAU PhD Prize for Division J: Galaxies and Cosmology. Jorryt Matthee currently holds a Zwicky fellowship on extragalactic astrophysics at ETH Zürich, using emission lines to study the early formation of distant galaxies with ground and space observatories. Dr Matthee, furthermore, make use of state-of-the-art cosmological hydrodynamical simulations to understand which physical mechanisms make galaxies different and cause the scatter in galaxy scaling relations.

Dr Jorryt Matthee's thesis presents spectacular results in 11 first-author papers that have transformed the way we see and understand distant galaxies across time. His own state-of-the-art observations with ALMA, Hubble and the VLT revealed that very distant galaxies are complex, actively assembling systems. Jorryt discovered some of the brightest distant galaxies and has also investigated the co-evolution of dark matter halos and galaxies in the state-of-the-art cosmological EAGLE simulation. Dr Matthee discovered some of the brightest distant galaxies and showed that they are much more common than previously thought, with important consequences for future space missions like Euclid. Jorryt's PhD work also mapped, dissected and discussed how galaxies have evolved over the first few billion years of the Universe and how they have played a key role in dissipating the cosmic fog during the epoch of re-ionisation, including the first direct observation of a galaxy ionising the surrounding inter-galactic medium. With numerical simulations, Dr Matthee found new interesting relations between the growth of galaxies and their alpha-enhancement, which future observations will test, and he was able to shed unique light in the so-called 'galaxy main-sequence'.

The PhD thesis of Jorryt Matthee was conducted at Leiden University, under the supervision of Profs. Huub Röttgering, Joop Schaye, and Dr David Sobral.